Login to your account

Username *
Password *
Remember Me

Create an account

Fields marked with an asterisk (*) are required.
Name *
Username *
Password *
Verify password *
Email *
Verify email *
Captcha *
Reload Captcha

Deep Learning

Deep Learning

Vote utilisateur: 0 / 5

Etoiles inactivesEtoiles inactivesEtoiles inactivesEtoiles inactivesEtoiles inactives

 

Automobile insurance fraud represents a pivotal percentage of property insurance companies' costs and affects the companies' pricing strategies and social economic benefits in the long term. Automobile insurance fraud detection has become critically important for reducing the costs of insurance companies. Previous studies on automobile insurance fraud detection examined various numeric factors, such as the time of the claim and the brand of the insured car. However, the textual information in the claims has rarely been studied to analyze insurance fraud.

 

This paper proposes a novel deep learning model for automobile insurance fraud detection that uses Latent Dirichlet Allocation (LDA)-based text analytics. In our proposed method, LDA is first used to extract the text features hiding in the text descriptions of the accidents appearing in the claims, and deep neural networks then are trained on the data, which include the text features and traditional numeric features for detecting fraudulent claims. Based on the real-world insurance fraud dataset, our experimental results reveal that the proposed text analytics-based framework outperforms a traditional one. Furthermore, the experimental results show that the deep neural networks outperform widely used machine learning models, such as random forests and support vector machine. Therefore, our proposed framework that combines deep neural networks and LDA is a suitable potential tool for automobile insurance fraud detection.

by  YiboWang WeiXu

Link to Full text

Deep Learning

Vote utilisateur: 0 / 5

Etoiles inactivesEtoiles inactivesEtoiles inactivesEtoiles inactivesEtoiles inactives

 

Merging datasets is a key operation for data analytics. A frequent requirement for merging is joining across columns that have different surface forms for the same entity (e.g., the name of a person might be represented as Douglas Adams or Adams, Douglas). Similarly, ontology alignment can require recognizing distinct surface forms of the same entity, especially when ontologies are independently developed. However, data management systems are currently limited to performing merges based on string equality, or at best using string similarity. We propose an approach to performing merges based on deep learning models. Our approach depends on (a) creating a deep learning model that maps surface forms of an entity into a set of vectors such that alternate forms for the same entity are closest in vector space, (b) indexing these vectors using a nearest neighbors algorithm to find the forms that can be potentially joined together. To build these models, we had to adapt techniques from metric learning due to the characteristics of the data; specifically we describe novel sample selection techniques and loss functions that work for this problem. To evaluate our approach, we used Wikidata as ground truth and built models from datasets with approximately 1.1M people’s names (200K identities) and 130K company names (70K identities). We developed models that allow for joins with precision@1 of .75-.81 and recall of .74-.81. We make the models available for aligning people or companies across multiple datasets.

Kavitha Srinivas 
IBM Research \AndAbraham Gale 
Yeshiva University \AndJulian Dolby 
IBM Research

link to full text